REACTOR PROSPECTS

of the

BELT PINCH

M. Kotschenreuther (IFS)

W. Dorland (Univ. Maryland)

Q.P. Liu (IFS)

INTRODUCTION

It is well known that high elongation enables high	I/I	aB
--	-----	----

Inductive belt pinch experiments indicate:

high
$$I/a$$
 $B => high$ is possible

Theoretical results of Turnbull et. al.:

high ballooning limit for high elongation cases (
$$\sim$$
 6) with indentation ("ellipsoidal shell" tokamak)

However:

For a *reactor*, cannot simply specify a high current: current is essentially whatever the bootstrap effect provides

Here we examine high bootstrap fraction (>99%) belt pinches

Use equilibrium code TOQ developed by General Atomic MHD group for high bootstrap ST s (B. Miller, A. Turnbull, Lin Liu et.al.)

Pick a somewhat broad pressure profile p() and vary and A

We examine: Ballooning stability

Reactor power density

Vertical stability (resistive wall)

Kink stability (hand waving)

Bootstrap driven Islands

Microinstability / E x B turbulence suppression

REACTOR POWER DENSITY (WALL LOADING)

Wall loading is a reasonably good measure of cost, if the wall technology can handle the flux

(cost ~ surface area ~ 1/ wall loading)

The Advanced Power Extraction group is examining various technologies to handle high fluxes

To evaluate how high the wall loading could be in a belt pinch, , we use an ARIES RS like model:

- Inboard blanket + shield => 130 cm between the inner plasma and the superconducting coil
- 15 T at the superconducting coil
- beta = 80% MHD limit (ballooning here)

Kink Stability (?)

Turnbull finds that the $_N$ kink stability criterion with a wall is strongly modified by the shape, and this can roughly be maesured by the "shape factor" $S=(I/aB)~q_{\rm edge}$

He examined elongations up to 2 with shape factors up to about 10, and found the (n=1) kink stable $_{N}$ for S=10 to be ~ 5.3 for a wall distance $_{D}$ b/a=1.5

In addition, decreasing b/a to 1.25 could double N

Higher elongation slightly increases N but can very strongly increase S

Thus, it appears reasonable to expect kink stability with a wall

Pessimistic Beta Limit Case

Suppose $_{\rm N}$ is limited to 2.5

(due to resistive wall kink modes, bootstrap Islands, etc.)

For a ~ 1.7 -2 reactor this is a "disaster": for 99% bootstrap, $\sim 2\%$ & wall load drops by a factor of 2

But $_{N}=2.5\,$ for a high k belt pinch is about the same as $_{N}=4.2\,$ for ARIES with elongation $\sim 1.7\text{-}2\,$

Thus high elongation is "insurance" against a low N limit

Vertical Stability

Have developed n = 0 linear resistive wall stability code based on perturbed Grad Shafranov equation:

$$* = A() + p() R2$$

* = A'() +
$$p'() R^2 + A + p R^2$$

Vacuum boundary conditions, includes arbitrary inductively responding axisymmetric loops outside the plasma

Many closely spaced loops (with appropriate conductivity) approximate a solid wall

Selected wires can be driven with an additional external voltage determined from sensor loops (feedback)

Code for arbitrary A, p is almost complete

For now, use flat current profile (Solvev equilibrium)

This is *pessimistic* compared to a high bootstrap fraction case:

It is well described in the literature that n=0 instability is reduced by reducing l_i the internal inductance (current peakedness)

Flat current profile has *higher* l_i than high bootstrap cases by roughly a factor of 1.6, so *the flat current results are pessimistic*

Poloidal Cross Sections

ARIES RS has a 5 cm Tungsten Conducting shell (1100 degree C) 40-60 cm away from the plasma:

Elongation 3 Li case: Li 10 cm from plasma edge, 2 cm thick (400 degree C)

Bootstrap Current Driven Magnetic Islands

Thin island stability is dominated by sum of 2 pressure driving effects:

- 1) Bootstrap Current Drive
- 2) MHD average curvature (Glasser, Greene & Johnson)

Can evaluate these terms from TOQ (include recent Hegna effect)

Find:

for high bootstrap fraction cases, the MHD term is more competitive than for less hollow current profiles (possible effect of Shafranov shift or magnetic shear?)

Is actual stability possible?

Yes, with either *indentation* or *higher* η (= d ln T / d ln n)

Microinstability Results

Linear comprehensive gyrokinetic stability analysis have been performed on scans of the numerical equilibria from TOQ

Code gs2: developed originally by M. Kotschenreuther parallelized by Q.P. Liu & W. Dorland nonlinear terms added by W. Dorland

Linear version used by G. A. and PPPL to analyze experimental data

SUMMARY:

Elongation reduces growth rates ~ 1 /

The instabilities shift to longer wavelength, so D_{mixing} is not much affected.

Velocity shear is increases by ~ , since:

Driven velocity shear is increased because \boldsymbol{B}_{pol} is increased (see Hahm-Burrel formula)

Diamagnetic velocity shear is increased because * = /a is decreased (higher b => lower B, smaller a)

Thus, prospects for turbulence suppression are greatly improved.

For equilibria just below the balooning beta limit with 99% bootstrap:

